\square

Example 2 - Multiplying or Dividing Powers with the Same Base
a) $\left(6^{\frac{1}{4}}\right)\left(6^{\frac{2}{4}}\right)$
b) $(n)^{3}\left(n^{-\frac{1}{5}}\right)$
c) $d^{\frac{3}{2}} \div d^{\frac{1}{2}}$
$d^{\frac{3}{2}-\frac{1}{2}}$
d) ${ }^{3^{-\frac{2}{3}}} 3^{-\frac{-1}{3}}$
$6^{\frac{1}{4}+\frac{7}{4}}$
$n^{3+-\frac{1}{5}}$
$3^{-\frac{2}{3}--\frac{4}{3}}$
$6^{\frac{8}{4}}$
$n^{3 \frac{3}{3}-\frac{1}{1}(5)}$
$d^{\frac{2}{2}}=d^{\prime}$
-d
$3^{-\frac{2}{3}+\frac{4}{3}}$
$\sqrt[3]{3^{\frac{2}{3}}}$
$\sqrt[3]{3^{2}}$

Example 2 - Multiplying or Dividing Powers with the Same Base
a) $\left(6^{1}\right)\left(6^{7}\right)$
b) $(n)^{3}\left(n^{\frac{1}{5}}\right)$
c) $d^{3} \div d^{1}$
d) $3^{3^{-\frac{2}{3}}}$
a) $6^{\left(\frac{1}{4} \frac{7}{4}\right)}$
b) $n^{\left(3+\frac{1}{5}\right)}$
c) $d^{\frac{3}{2}-\frac{1}{2}}$
$d^{\frac{2}{2}}$
d) $3^{-\frac{2}{3}-\frac{4}{3}}$
$6^{\frac{8}{4}}$
$n^{\left(\frac{15-\frac{1}{5}}{5}\right)}$
$3^{-\frac{2}{3} \frac{4}{3}}$
6^{2} or 36
$n^{\frac{14}{5}}$
d^{1} or d
$3^{\frac{2}{3}}$

Multiplying or Dividing Powers with Different Bases
a) $\frac{9^{3}}{81^{2}}$
b) $\frac{2^{1.8}}{4^{0.3}}$
c) $\frac{25^{12}}{125^{0.4}}$
$\begin{aligned} \frac{\left(3^{2}\right)^{3}}{\left(3^{4}\right)^{2}} & =\frac{3^{6}}{3^{8}} \frac{2^{1.8}}{\left(2^{2}\right)^{0.3}} \\ & =3^{6.8} \quad \frac{2^{1.8}}{2^{0.6}}\end{aligned}$
$3^{2}=9$
$3^{4}=8$
$\frac{1}{3^{2}}$
$2^{1.8 \cdot 0.6}$

Multiplying or Dividing Powers with Different Bases
a) $\frac{9^{3}}{81^{2}}$
b) $\frac{2^{1.8}}{4^{0.3}}$
c) $\frac{25^{12}}{125^{0.4}}$

In order to solve these questions, you will need to convert the questions so that they have the same base
a) $\frac{9^{3}}{\left(9^{2}\right)^{2}}$
b) $\frac{2^{1.8}}{\left(2^{2}\right)^{0.3}}$
c) $\frac{\left(5^{2}\right)^{1.2}}{\left(5^{3}\right)^{0.4}}$
$\frac{9^{3}}{9^{4}}$
9^{3-4} $\frac{2^{1.8}}{2^{0.6}}$
$\frac{5^{2.4}}{5^{1.2}}$
$2^{1.80 .6}$
$5^{1.2} \doteq 6.899$
9^{-1} or $\frac{1}{9}$
$2^{1.2} \doteq 2.297$

Example 3 - Simplifying Powers with Rational Exponents
a) $\left(8 x^{9}\right)^{\frac{3}{3}}$

b) $\left(m^{5} m^{\frac{1}{2}}\right)^{\frac{2}{3}}$
c) $\left(\frac{3^{4}}{164}\right)^{-0.75}$

Example 3 - Simplifying Powers with Rational Exponents
a) $\left(8 x^{9}\right)^{\frac{2}{3}}$

Distribute the exponent to both the coefficient and the variable in the brackets

$$
\left(8^{\frac{2}{3}}\right)\left(x^{9}\right)^{\frac{2}{3}}
$$

Evaluate both parts of the question separately

$$
\text { (4) }\left(x^{\frac{18}{6}}\right) \text { or } 4 x^{3}
$$

Example 3 - Simplifying Powers with Rational Exponents
b) $\left(m^{5} m^{\frac{1}{2}}\right)^{\frac{2}{3}}$

This question can be solved in two different ways:

Method One
Because the bases are the same, you can add the exponents within the brackets

$$
\begin{aligned}
& {\left[m^{5+\frac{1}{2}}\right]^{\frac{2}{3}}} \\
& {\left[m^{\frac{11}{2}}\right]^{\frac{2}{3}}}
\end{aligned}
$$

Method Two
Use the Power of a Power rule
$\left(m^{\frac{10}{3}}\right)\left(m^{\frac{2}{6}}\right)$
Add the exponents

$$
m^{\frac{22}{6}} \text { or } m^{\frac{11}{3}}
$$

Use Power of a Power rule

$$
m^{\frac{22}{6}} \text { or } m^{\frac{11}{3}}
$$

Example 3 - Simplifying Powers with Rational Exponents
c) $\left(\frac{3^{4}}{16}\right)^{-0.75}$

Convert the base to a single fraction with the same exponent

$$
\begin{aligned}
& \left(\frac{3^{4}}{2^{4}}\right)^{-0.75} \\
& {\left[\left(\frac{3}{2}\right)^{4}\right]^{-0.75}}
\end{aligned}
$$

Use the Power or a Power rule and solve

$$
\begin{aligned}
& \left(\frac{3}{2}\right)^{-3} \\
& \left(\frac{2}{3}\right)^{3}=\frac{8}{27}
\end{aligned}
$$

Example 4 - Applying Powers with Rational Exponents
The price of a vintage video game with the box and instructions doubles every 20 years. The video game initially cost $\$ 60.00$. The present value of the game came can be modelled using the formula

$$
\begin{array}{ll}
N=60\left(22^{\frac{20}{20}}\right. & N=\text { present value } \\
\text { nt value in } t \text { years. } & t=\text { years. }
\end{array}
$$

where N is the present value in t years.
a) What does that value 2 in the formula mean?
b) What is the value of the video game after 20 years?
c) What is the value of the video game after 4 years? $\$ 68.92$
d) What is the value of the video game after 33 years?
$N=60(2)^{33 / 20} \quad N=60(2)^{4 / 20}$

Solution:

a) The 2 indicates that the value of the video game doubles every 20 years
b) The video game will have doubled in value after

20 years; as result, the video game will be worth
$\$ 120.00$ (no work is necessary to solve this question).
c) After 4 years you can substitute into the equation like so:

$$
\begin{aligned}
& N=60(2)^{\frac{4}{20}} \\
& N=60(2)^{0.2} \\
& N=60(1.148698 \ldots) \\
& \quad N=68.92
\end{aligned}
$$

d) After 33 years you can substitute into the equation like so:

$$
\begin{aligned}
& N=60(2)^{\frac{33}{20}} \\
& \qquad \begin{array}{l}
N=60(2)^{1.65} \\
N=60(3.138336 \ldots) \\
\\
\quad N=188.30
\end{array}
\end{aligned}
$$

End of Lesson

Assignment: \quad Page 180 \# 1-5, $7,8,10,12,14,15$ Challenge: Page 180 \# 16, 17

