

Oct 2-12:25 PM

Mar 19-7:45 AM

Example 1: Sketch graphs of Quadratic Functions in Vertex form Find: - vertex $2^{\text {nd }}$ calc max or min - equation of axis of symmetry - direction of opening - width compared to $\mathrm{y}=\mathrm{x}^{2} \quad$ Same, Wider or Narrower - domain \& range always $x \in R, y \leq$ or $y \geq$ value from vertex - max. or min. and value vertex						
$y=a(x-p)^{2}+a$	$\begin{aligned} & \text { vertex } \\ & (p, q) \end{aligned}$	$\begin{gathered} \text { Axis of } \\ \text { Sym. } \\ X=P \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered}\text { a }- \text { - } \\ \text { Direction } \\ \text { of } \\ \text { ofening } \\ a \rightarrow->v e\end{gathered}\right.$		Domain And Range	$\begin{gathered} \text { Max or } \\ \begin{array}{c} \text { Min } \\ \text { Value } \end{array} \end{gathered}$
1. $y=22 \times \times 17-3$	$(-1,-3)$	$x=-1$	UP	narroves	$X \in R$	min $=-3$
					$y \geq-3$	
2. $y=3 x^{2}$	$(0,0)$	$x=0$	up	naraver	$x \in R$	$\min =0$
					$y \geq 0$	
3. $y=-2 x^{-1}$	(0,-4)	$x=0$	down	narioner	$X \in R$	max $=-\frac{1}{4}$
					$y \leq-4$	
4. $\mathrm{v}=(x-2)^{\text {a }}$	$(2,0)$	$x=2$	up	Same	$x \in R$	$\min =0$
					$y \geq 0$	
5. $y=-\frac{1}{2}(x+3)$	(-3,0)	$x=3$	dan	wider	$\begin{aligned} & x \in R \\ & y \leq 0 \end{aligned}$	max:0

Oct 2-12:25 PM

1) Quadratic Functions in Vertex form - Terminology

Definition:
Quadratic function : a function f whose value of $f(x)$ at x is given by a polynomial of degree two. For example $f(x)=x^{2}$ is the simplest form of a quadratic function.

The symmetrical curve of a quadratio function is better known a parabola. The parabola is symmetrical about the line called the Axis of Symmetry.

The y-coordinate of the vertex is called the minimum value if the graph opens upward or the maximum value if the parabola opens downward.

Oct 2-12:29 PM

Oct 1-10:21 PM

Method 1: Sketch the using Transformations

\qquad
\qquad

Oct 2-7:06 PM

Oct 4-5:31 AM

Example 4: Determine the x - and y -intercepts of the following equations
a) $f(x)=2(x+1)^{2}-3$
b) $2(x-1)^{2}$
c) $f(x)=-3(x+2)^{2}-1$

Example 2: Determine a Quadratic Function in Vertex Form Given its Graph
Method 1: Use points and Substitution
You can determine the equation of the function using the coordinates of the vertex and on other point.
Step 1: Express the function as
Step 1: Express
$f(x)=a(x-p)^{2}+q$

Step 2: Choose one other point on the graph. Substitute the values of x, and y into the function and solve for a.

b) $f(x)=2(x-1)^{2}$

c) $f(x)=3(x+2 y-1$

Oct 4-5:39 AM

Assignment: Pg 157-158 \#'s 1a,c, 2. b,c, 4.a, 5, 8. b, c 9 ad

