Lesson 1 - Square Roots and Cube Roots

Algebra and Number

1. Determining the square root of a perfect square and explaining the process
2. Determining the cube root of a perfect cube and explaining the process
3. Solving problems involving square roots or cube roots

Lesson 4.1 Square Roots and Cube Roots
Key Terms- With your partner, determine the meaning of the following
Power-
Base-

Exponent-

Product-

 answer when multiplyingQuotientanswer when dividing

Investigating Square Roots and Cube Roots

Determine the area of each square shown. Record the information in a table.

Extend the pattern for squares with dimensions of 4,5 and 6 units.

What is the relationship between the side length of a square and the area of the square?

Determine the volume of each cube shown. Record the information in a table

Extend the pattern with cubes with 4, 5 or 6 units.

What is the relationship between the edge length of a cube and the volume of a cube?

Link the Ideas(Erase to Reveal)

Perfect squareand Square loot are related to each other.
The number 25 is a perfect square. It is formed by multiplying two factors of 5 together.
(5)(5) or $5^{2}=25 \quad$ The symbol for square root is $\sqrt{ }$.

The square root of 25 is 5 , or $\sqrt{25}$

Perfect cube and cube root are related to each other. The number 27 is a perfect cube. It is formed by multiplying three factors of 3 together.
(3)(3)(3) or $3^{3}=27 \quad$ The symbol for cube root is $\sqrt[3]{ }$.

The cube root of 27 is 3 , or $\sqrt[3]{27}$

Some numbers are both perfect squares and perfect cubes.

$$
\begin{array}{rlrl}
64 & =(8)(8) \text { and } \quad 64 & =(4)(4)(4) \\
& =8^{2} & & =4^{3}
\end{array}
$$

Therefore, 64 is a perfect square and a perfect cube.

Copyright © 2010 McGraw-Hill Ryerson Limited, a Subsidiary of The McGraw-Hill Companies. All rights reserved.

Example 1 Identify Perfect Squares and Perfect Cubes

State whether each of the following numbers is a perfect square, a perfect cube, both, or neither.
a) 121 (Diagram)
b) 729 (Prime Factorization)
c) 356 (Calculator)

Example 1 Identify Perfect Squares and Perfect Cubes

State whether each of the following numbers is a perfect square, a perfect cube, both, or neither.
a) 121
b) 729
c) 356

Solution

a) To decide whether 121 is a perfect square you might use a diagram.

$$
\begin{aligned}
& 10^{2}=100 \text { Too low } \\
& 12^{2}=144 \text { Too high } \\
& 11^{2}=121 \text { Correct! }
\end{aligned}
$$

A square with side lengths of 11 units has an area of 121 units 2. $(11)(11)=121$.
Therefore, 121 is a perfect square.
To decide whether 121 is a perfect cube, you could use guess and check.

No whole number cubed results in a product of 121 .

$$
\begin{aligned}
& 4^{3}=64 \text { Too low } \\
& 5^{3}=125 \text { Too high }
\end{aligned}
$$

Therefore, 121 is not a perfect cube.
b) For 729, you might use prime factorization. Prime factorization involves writing a number as the product of its prime factors. A factor tree helps organize the prime factors.
Record the prime factorization for 729 . Then, identify the factors that can be squared or cubed to form the product 729 .

These two groups indicate the square root of 729.

These three groups indicate the cube root of 729.

You can write 729 as the product of (27)(27) $=27^{2}$. Therefore, 729 is a perfect square.
You can write 729 as the product of (9)(9)(9) $=9^{3}$. Therefore, 729 is a perfect cube.
c) For 356, you might use a calculator.

C] $356 \quad \sqrt{x} 18.967962$
C] 356 2nd $\sqrt[x]{y} 3$ =7.08734
Since the square root is not a whole number, 356 is not a perfect square. Since the cube root is not an integer, 356 is not a perfect cube. The number 356 is neither
a perfect square nor a perfect cube.

Your Turn

State whether each number is a perfect square, a perfect cube, both, or neither. Use a variety of methods.
a) 125 (Diagram)

b) $196{ }_{\text {(Prime Factorization) }}$
c) $4096($ calaulaos)

$\sqrt{4096}=64$

perfect
cube
$2 \times 7=14$
14^{2}
Perfect square

Example 2 Solve Problems Involving Square Roots and Cube Roots The uranium that Saskatchewan produces in a year has a volume of about $512 \mathrm{~m}^{3}$. If this volume were made into a single cube, what would be the dimensions of the cube?

Example 2 Solve Problems Involving Square Roots and Cube Roots

The uranium that Saskatchewan produces in a year has a volume of about $512 \mathrm{~m}^{3}$. If this volume were made into a single cube, what would be the dimensions of the cube?
Method 1: Use Prime Factorization
Determine the cube root of 512 .
Record the prime factorization for 512. Then, identify the factors that can be cubed to form 512.

Since there are three equal groups, you know that 512 is a perfect cube.

How do you know that 512 is not a perfect square?

The cube root of 512 is 8 .
The cube would be 8 m in length, height, and width.
Method 2: Use a Calculator
C 512 2nd $\sqrt[x]{y} 3=8$.
The cube would be 8 m in length, height, and width.

Your Turn

a) A floor mat for gymnastics is a square with an area of $196 \mathrm{~m}^{2}$. What is its side length?

$$
\left[\begin{array}{rl}
-x^{x} \\
196
\end{array}\right] \times \quad \begin{aligned}
x^{2} & =196 \\
\sqrt{x^{2}} & =\sqrt{196} \\
x & =14
\end{aligned}
$$

b) The volume of a cubic box is 27000 in. ${ }^{3}$ Use two methods to determine its dimensions.

End of Lesson
Assignment: Page 158 \#1-12, 14, 16, 17, 20
Challenge: Page 158 \#18,19

