

Recall: a term is a product of numbers and variables. Terms are separated by addition or subtraction signs.

Example: State the number of terms in the following polynomials.

Recall: Simplify or Expand means to multiply and remove the brackets.
For example:
Expand $3 x(x-2)$

Simplify $(x+2)(x-5)$

$$
x^{2}-5 x+2 x-10
$$

$$
x^{2}-3 x-10
$$

Reversing this process is called dividing or factoring.

For example:
Factor $\quad 3 x^{2}-\underline{6 x}=3 x(x-2)$

$$
x^{2}-3 x-10=(x+2)(x-5)
$$

The process of factoring with polynomials is similar to factoring with numbers.
Example
Determine the GCF of $16 x^{2} y$ and $24 x^{2} y^{3}$.


```
The process of factoring with polynomials is similar to factoring with numbers
    Example
    Determine the GCF of 16x y y and 24x 2 y 3
Solution
Method 1: Use Prime Factorization
List the prime factorization of the numerical coefficients.
16=(2)(2)(2)(2)
24=(2)(2)(2)(3)
Numerical GCF =(2)(2)(2)=8
List the prime factorization of the variables
x2y=(x)(x)(y)
x 2 y 3}=(x)(x)(y)(y)(y
Variable GCF = (x)(x)(y)=\mp@subsup{x}{}{2}y
```

Therefore, the GCF of $16 x^{2} y$ and $24 x^{2} y^{3}$ is $8 x^{2} y$

Method 2: List the Factors
Write the factors of each term.
16x2y: $1,2,4,8,16, x, x^{2}, y$
$24 x 2 y 3: 1,2,3,4,6,8,12,24, x, x^{2}, y, y^{2}, y^{3}$
The greatest common factors are 8, x^{2}, and y.
Therefore, the GCF of $16 x^{2} y$ and $24 x^{2} y^{3}$ is $8 x^{2} y$
Oct 24-12:33 PM

$$
\begin{aligned}
& \text { Example } 2 \\
& \text { Write } 7 a^{2} b-28 a b+14 a b^{2} \text { in factored form } \\
& 7 a^{2} b-28 a b+14 a b^{2} \\
& \begin{array}{cc}
7 & -7 \\
14: 7 & a^{2}:\left(\begin{array}{l}
a \\
7 \\
7
\end{array}\right) \cdot 2 \\
a & a \\
a & a \\
a
\end{array} a^{2} \\
& 7 a b\left(\frac{7 a^{2} b}{7 a b}-\frac{28 a b}{7 a b} \frac{14 a b^{2}}{7 a b}\right) \\
& 7 a b(1 a-4+2 b)
\end{aligned}
$$

Mar 7-9:37 PM

```
Example 2
Write 7a }\mp@subsup{a}{}{2}b-28ab+14a\mp@subsup{b}{}{2}\mathrm{ in factored form.
Solution
Ask the questions: How many terms are there? What is common in each term?
    There are 3 terms.
    Identify the GCF of the numerical coefficients by listing the prime
    factorization for each coefficient.
    7=7
    28=(2)(2)(7)
    14=(2)(7)
    The GCF is 7.
    Identify the GCF of the variables.
    a}\mp@subsup{a}{}{2}b=(a)(a)(b
    ab=(a)(b)
    ab
    The GCF is }a
    Therefore, the GCF of 7 a'b -28ab+14ab}\mp@subsup{}{}{2}\mathrm{ is 7ab.
    Divide each term by the GCF.
    7a}\mp@subsup{a}{}{2}b-28ab+14a\mp@subsup{b}{}{2}=7ab(a-4+2b
Check:
Multiply.
7ab(a-4+2b)=(7ab)(a)+(7ab)(4)+(7ab)(2b)
=7 a}\mp@subsup{a}{}{2}b-28ab+14a\mp@subsup{b}{}{2
```

Your Turn
Write each polynomial in factored form.
a) $27 r^{2} s^{2}-18 r^{3} s^{2}-36 r s^{3}$

$$
\begin{gathered}
9 r s^{2}\left(3 r \quad-2 r^{2}-4 s\right. \\
9 r s^{2}\left(3 r-2 r^{2}-4 s\right)
\end{gathered}
$$

b) $4 n p^{2}+10 n^{4} p-12 n^{3} p$

$$
2 n p\left(2 p+5 n^{3}-6 n^{2}\right)
$$

Recall terms are separated by plus or minus signs.
State the number of terms in each polynomial:

Example 3
Write the expression in factored form.
$3 x(x-4)+5(x-4)$

$$
(x-4)(3 x+5)
$$

Example 3
Write the expression in factored form.
$3 x(x-4)+5(x-4)$

Solution

How many terms are there? What is common in each term?
The GCF in $3 x(x-4)$ and $5(x-4)$ is $(x-4)$.
$3 x(x-4)+5(x-4)$
$=(x-4)(3 x+5)$

Your Turn
Write each expression in factored form.
a) $\quad 4(x+5)-3 x(x+5)$

$$
(x+5)(4-3 x)
$$

b) $12 b(a-7)+(a-7)$

$$
(a-7)(12 b+1)
$$

c) $(x-6)(5 x+2)+(x+3)(5 x+2)$

$$
(5 x+2)[(x-6)+(x+3))
$$

d) $3 x(x+5)-4 y(x+5)+5 x y(x+5)$

Oct 24-12:48 PM

Your Turn
a) $a^{2}+8 a b+2 a+16 b$
b) $a x+a+b x+b$
c) $x^{2}+y-x y-x$
d) $x^{3}+x+2 x^{2}+2$

Common Factoring With Fractions
When the polynomial being factored contains a fraction, it is advantageous to factor out the fraction so the remaining factor has integral coefficients.

Example 5

Factor the following:
a) $\frac{1}{2} a^{2}-5 a$
b) $x^{2}-\frac{5}{2} x^{2}+\frac{7}{4} x$

Example 5

Factor the following:
a) $\frac{1}{2} a^{2}-5 a$

Solution

$\frac{1}{2} a(a-10)$
a) $9 x^{2}+\frac{1}{6} x$
b) $\frac{3}{4} x^{2}-10$

Assignment: Page 220 \#2 odd letters, \#4-6 odd letters, 8, 9, 11-12 odd letters, 16 Challenge: Page 220\#19

