

Mar 7-10:08 PM

Example 3 Factor Trinomials of the Form $a x^{2}+b x+c, a \neq 1$

Factor, if possible.
$3 x^{2}+8 x+4$

Solution

First, check for a GCF. The GCF of the polynomial $3 x^{2}+8 x+4$ is 1 .

Method 1: Use Algebra Tiles
Arrange three x^{2}-tiles, eight x-tiles, and four 1-tiles into a rectangle. Then, add tiles to show the dimensions.

The dimensions of the resulting rectangle are $3 x+2$ and $x+2$.
Check:
Multiply.
$(3 x+2)(x+2)=3 x(x+2)+2(x+2)$
$=3 x^{2}+6 x+2 x+4$
$=3 x^{2}+8 x+4$

Method 2: The Cross or Diamond Method

$$
\text { Recall:: } \begin{aligned}
& (3 x+2)(x+5) \\
= & 3 x^{2}+15 x+2 x+10 \\
= & 3 x^{2}+17 x+10
\end{aligned}
$$

Note that the sum of $15 x+2 x$ is the middle term, $17 x$.

The product of these two numbers is $30 x^{2}$.
This is the same as the product of the first and last terms of the trinomial. ($3 x^{2} \times 10=30 x^{2}$)

Therefore, to factor $3 x^{2}+17 x+10$, look for two numbers that have a product of 30 and a sum of 17 .

A cross can be used to help organize these numbers when factoring.

\qquad $=-\mathrm{cp}$

- Bottom
Theentimbers beowe the side rambers on tie aross.

Once all numbers are filed in on
the cross, step away from the
cruss crid use the brackels to
finish factoring.

Example 3 continued
Factor $3 x^{2}+17 x+10$

$(3 x)(x)$
The first terms of each bracket will be factors of the first term of the trinomia

The factors of $\mathbf{3} \boldsymbol{x}^{2}+\mathbf{1 7 x}+\mathbf{1 0}$ are $(3 x+2)(x+5)$

Example 4
Factor, if possible

Example 6
Factor, if possible $6 x^{2}-5 x y+y^{2}$

$(3 x \quad y)(2 x \quad y)(3 x-y)(2 x-y)$

$(3 x-1 y)(2 x-1 y)$

