6.5 Slope
3. Demonstrate an understanding of slope with respect to:

- rise and run
- line segments and lines
- rate of change
- parallel lines
- perpendicular lines.

The national, provincial, and territorial parks of western and northern Canada feature some of the most beautiful back country in the world. To safely enjoy mountain adventures, specialized skills and knowledge, such as avalanche awareness, are essential. Though avalanches occur mostly in winter, they can happen at any time of the year. It is important to understand the many conditions that cause avalanches. The steepness, or slope, of a mountainside is one of them.

Nov 14-4:01 PM

Nov 14-4:08 PM

Example 1 Classify the Slope of a Line

The North Shore in Vancouver is popular for hiking and biking. Bridges and stunt structures on trails are complex and often extremely challenging. They have a huge variety of slopes. Classify each slope marked on the photographs as either positive or negative.

$$
\text { IJ positive } K L-z e r o
$$

Copyright © 2010 McGraw-Hill Ryerson Limited, a Subsidiary of The McGraw-Hill Companies. All rights reserved.

Jun 4-11:59 AM

Example 3 Determine the Slope of a Line Segment
What is the slope, m, of each line segment with the given end
points?
a) $S(-3,6)$ and $T(5,2)$
b) $\mathrm{H}(4,3)$ and $\mathrm{K}(4,8)$
c) $\mathrm{M}(-9,-7)$ and $\mathrm{N}(-1,-7)$

Solution
Method 1: Use a Graph
Plot the points on grid paper. Count the rise and run
a) Plot the points $(-3,6)$ and $(5,2)$.

Recall that a line that falls from left to right
has a negative slope. $\frac{4}{8}=-\frac{1}{2}$

Method 2: Use the Slope Formula

Label the points and substitute into the
formula. $x_{1} y_{1} \quad x_{2} y_{2}$
a) $\mathrm{S}(-3,6)^{\prime} \mathrm{T}(5,2)$ or $\mathrm{T}(5,2) \mathrm{S}(-3,6)$

$$
\begin{aligned}
& \mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \mathrm{~m}=\frac{2-6}{5-(-3)} \\
& m=\frac{-4}{8}=-\frac{1}{2}
\end{aligned}
$$

$y_{1} y_{1} x_{2} y_{2}$
$\mathrm{H}(4,3) \mathrm{K}(4,8)$
$x y_{1} \quad x_{2} y_{2}$
$x_{2} y_{2} x_{1} y_{1}$
c) $\mathrm{N}(-1,-7) \mathrm{M}(-9,-7)$
$\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\mathrm{m}=\frac{8-3}{4-4}$
$m=\frac{-7-(-7)}{-9-(-1)}$
$m=\frac{5}{0}=$ undefined
$m=\frac{0}{-8}=0$
your Turn
a) Use a graph to determine the slope of the line segment with
endpoints $P(-5,6)$ and $Q(1,10)$.
b) Use the slope formula to determine the slope of the line segment
with endpoints $W(2,-2)$ and $X(-5,5)$.

List three other points on the line. Graph the line.

Move down 6 units and right 8 units from the point $(-3,2)$.
What do you notice?
Explain.

Three other points on the line are ($-7,5$), ($1,-1$), and ($5,-4$).
Now draw the line through the points.

Your Turn
The point $(-6,1)$ is on a line that has a slope of $\frac{1}{3}$
List three other points on the line and graph the line.

