Lesson 7.1 Slope -intercept form
. Relate linear relations expressed in:

- slope-intercept form $(y=m x+b)$
- general form $(A x+B y+C=0)$
- slope-point form $(y-y 1=m(x-x 1))$ to their graphs.


To write the equation of a straight-line graph, you can use the following two constants:

- the rate of change or slope, $m$
- the $y$-intercept. If $(0, b)$ is the point where the line crosses the $y$-axis, then $b$ is the $y$-intercept.

The equation of a non-vertical straight-line graph can be written in slopeintercept form. The equation is $y=m x+b$, where $m$ represents the slope and $b$ represents the $y$-intercept.

| For each table of values below, determine the slope ( m ) and the $y$-intercept of the line containing the points. Then write the equation of the line in $y=m x+b$ form. Finally, graph the line using calculator technology |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Table of Values |  |  | Graph | Slope, m | $\underset{b}{y \text {-intercept, }}$ | Equation, $y=m x+b$ |
| $x$ | $y$ |  |  | $\begin{aligned} & m=\frac{\Delta y}{\Delta x} \\ & m=\frac{2}{1} \\ & m=2 \end{aligned}$ | 1 | $y=2 x+1$ |
| 0 | 1 |  |  |  |  |  |
| 1. | 3 |  |  |  |  |  |
| 2 | 5 |  |  |  |  |  |
| $\boldsymbol{x}$ | $y$ |  |  | $\begin{aligned} & m=\frac{\Delta y}{\Delta x} \\ & m=\frac{1}{2} \end{aligned}$ | 1 | $y=\frac{1}{2} x+1$ |
| 0 | 1 |  |  |  |  |  |
| 2 | 2 |  |  |  |  |  |
| 4 | 3 |  |  |  |  |  |
| $x$ | $y$ |  | $\begin{aligned} & y \\ & 2 \end{aligned}$ | $\begin{aligned} & m=\frac{\Delta y}{\Delta x} \\ & m=\frac{1}{2} \end{aligned}$ | -1 | $y=\frac{1}{2} x+(-1)$ |
| 0 | -1 |  |  |  |  |  |
| 2 | 0 | $\square$ |  |  |  |  |
| 4 | 1 | $\pi$ | ${ }^{-2}$ |  |  |  |
| $x$ | $y$ |  |  | $\begin{aligned} & m=\frac{\Delta y}{\Delta x} \\ & m=\frac{-2}{1} \\ & m=-2 \end{aligned}$ | -1 | $y=-2 x+(-1)$ |
| 0 | -1 |  |  |  |  |  |
| 1 | -3 |  |  |  |  |  |
| 2 | -5 |  |  |  |  |  |

Nov 18-5:24 PM

## $\sqrt[3]{0^{20}} 7$ Slope-Intercept Form

Using the information from the table, plot the individual data points on the graph. Then, draw a straight line through the points.

| Total Call Time (min) | Total Cost (\$) |
| :---: | :---: |
| 100 | 6 |
| 300 | 14 |
| 500 | 22 |



Copyright © 2010 McGraw-Hill Ryerson Limited, a Subsidiary of The McGraw-Hill Companies. All rights reserved.

Jun 4-11:59 AM

Example 1 Write the Equation of a Line in Slope-Intercept Form
a) What are the slope and $y$-intercept of the line shown in the graph?


Solution
a) The $y$-intercept is 1 . Therefore, $b=1$. Using the points $(0,1)$ and $(3,-1)$, the slope
is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{-1-1}{3-0}$
$m=\frac{-2}{3}$
What do you know about the slope if the line falls from left to right?

How else could you determine the slope?


b) Write the equation of the line in slope-intercept form,
$y=m x+b$.
Substitute the values of $m$ and $b$ into the slope-intercept form of an
equation. $y=m x+b$
The equation of the line in slope-intercept form is $\quad y=-\frac{2}{3} x+1$
c) Use graphing technology to check your equation.

How can you confirm that this is the equation of the line that passes through the points $(0,1)$ and $(3,-1)$ ?
a) What are the slope and $y$-intercept of the line shown in the graph?
b) What is the equation of the line in slope-
 intercept form, $y=m x+b$ ?
c) Use graphing technology to check your equation.


# fig Slope-Intercept Form <br> Determine the slope of the line. <br> Write your solution in the box. <br>  <br>  



Nov 18-6:00 PM


Nov 18-6:25 PM

Homework: Page 349
Odd letters for $\# 1,3,5,6,8,9,10$, all letters for $\# 13$, ch 19

