9.1 Solving Systems of Linear Equations by Substitution

Activity: In the following balance diagrams, each block is identical in mass. Each cone is identical in mass.

2. Describe how you could determine the mass of one block from Diagram 2. What is the mass of one block?
3. What is the mass of one cone? How did you determine your answer?
4. Write an equation for each balance scale in Diagram 1. Remember to state what your variables represent.
5. Write an equation for Diagram 2.
6. Reflect and Respond Use diagrams to explain how to determine the mass of a single pyramid and the mass of a single cylinder for the following scenario.

- Five pyramids and three cylinders have a mass of 44 g .
- Two pyramids have the same mass as one cylinder.

$5 p+3 y=44$
$5_{p}+3\left(\alpha_{p}\right)=44$
$2_{p}=y$
$50+6 p=44$
$p=4$

7. Use algebra to determine the mass of one pyramid, p, and thelmass of one cylinder, c.

8. Describe a situation where using a diagram is less effective than using algebra.

Jun 4-11:59 AM

Jun 4-11:59 AM

Jun 4-11:59 AM

Jun 4-11:59 AM

The skill of substituting algebraic expressions is used regularly in math and science. The
substitution method can provide a quick solution to a linear system.

Example 1
Solve the following linear system.
$4 x+5 y=26$
$3 x=y-9$

Solution
First, solve for $\begin{aligned} y \text { in } 3 x & =y-9 \\ +9 & +9\end{aligned}$
$3 x+9$ (y)

Substitute $3 x+9$ for y in $4 x+5 y=26$.
$4 x+5(3 x+9)=26$

$$
\begin{aligned}
4 x+5 y & =26 \\
4 x+5(3 x+9) & =26 \\
4 x+15 x+45 & =26 \\
19 x+45 & =26 \\
-45 & -45 \\
\frac{19 x}{19} & =\frac{19}{19} \quad x
\end{aligned}
$$

Substitute -1 for x in $3 x=y-9$.

Steps for the Substitution Method
Step 1: Solve one equation for one variable
Step 2: Substitute into the other equation and solve for the one variable.
Step 3: Substitute into an original equation and solve for the second variable.
Example 2 Solve a System of Linear Equations by Substitution
Admission to the 2009 Abbotsford International Airshow cost \$80 for a car with two
adults and three children. Admission for a car with two adults cost \$50. Use algebra to
determine the cost for one child and the cost for one adult. There was no charge for the
vehicle or parking. Determine the admission prices.
Solut

May 29-3:30 PM

Example 1 Solve a System of Linear Equations by Substitution

Admission to the 2009 Abbotsford International Airshow cost $\$ 80$ for a car with two adults and three children. Admission for a car with two adults cost $\$ 50$. Use algebra to determine the cost for one child and the cost for one adult. There was no charge for the vehicle or parking.

Solution

Let C represent the cost for one child, in dollars.
Let A represent the cost for one adult, in dollars.
For the first car, $2 A+3 C=80$.
For the second car, $2 A=50$.
The second equation has only one variable. So, determine the cost for one adult first.
$2 A=50$
$A=25$
Solve for C by replacing A with 25 .
$2 A+3 C=80$
$2(25)+3 C=80$
$50+3 C=80$
$3 C=30$
$C=10$

May 29-3:24 PM

> Example 3 Isolate a Variable Before Solving by Substitution At a dance recital, there were 220 people. Tickets cost $\$ 9$ for an adult and $\$ 6$ for a child. The dance school collected $\$ 1614$ in ticket sales. How many adults and how many children attended the recital?
> Solution
> Let a be the number of adults at the recital.
> Let c be the number of children at the recital.
> Write an equation that represents the total number of adults and children. $a+c=220$
> Write an equation that represents the amount collected by the dance school. $9 a+6 c=1614$
> Isolate the Variable c in the first equation
> $a+c=220$
> $c=220-a$
> Substitute for c in w.
> $9 a+6(220-a)=1614$
> $9 a+1320-6 a=1614$
> $3 a+1320=1614$
> $3 a=294$
> $a=98$

Substitute the number of adults into q to finish solving the system.
$98+c=220$
$c=122$

May 29-3:43 PM

