9.2 Solving System of Equations by Elimination
9. Solve problems that involve systems of linear equations in two variables, graphically and algebraically.

9.2 Solving Systems of Linear Equations by Elimination

You can solve a system of linear equations using the elimination method. To do this, a variable in both equations must have the same or opposite coefficient. It is often necessary to multiply one or both equations by a constant.

For example, solve the following linear system:

$$
\begin{aligned}
& 6 a+5 b=24 \\
& 4 a+3 b=12
\end{aligned}
$$

In order to eliminate variable a, you need to multiply the first equation by -2. Multiply the second equation by 3 . Now, when we add the terms together the variable a will be eliminated ($-12 a+12 a=0$).

Example 1 Solve a System of Linear Equations by Elimination
Connor downloaded two orders of games and songs. The first order consisted of five games and four songs for $\$ 26$. The second order consisted of three games and two songs for $\$ 15$. All games cost the same amount, and all songs cost the same amount. Write a system of linear equations. Then, determine the cost of one song and the cost of one game.

Solution

Your Turn

A group of people bought tickets for a University of Alberta basketball playoffgame.
Two student tickets and six adult tickets cost \$102. Eight student tickets and three adult tickets cost $\$ 114$. What was the price for a single adult ticket? What was the price for a single student ticket?

Jun 3-8:21 AM

Your Turn

During lunch, the cafeteria sold a total of 160 muffins and individual yogurts. The price of each muffin is $\$ 1.50$. Each container of yogurt is $\$ 2.00$. The cafeteria collected $\$ 273.50$. Set up and solve a linear system in order to determine the number of muffins and the number of yogurts sold.

Your Turn

A rectangular parking pad for a car has a perimeter of 12.2 m . The width is 0.7 m shorter than the length. Use a linear system to determine the dimensions of the pad.

